Problem Sheet 3 For Supervision in Week 10

1. Return to the last question of last week and find **all** integer solutions to the following:

(i) $\bigstar 3m + 5n = 1$, (ii) 2m + 15n = 4, (iii) $\bigstar 31m + 385n = 1$, (iv) 41m + 73n = 20. (v) $\bigstar 93m + 81n = 3$, (vi) 697m + 527n = 13, (vii) $\bigstar 533m + 403n = 52$.

- 2. Alison spends £11.00 on sweets for prizes in a contest. If a large box of sweets costs 90p and a small box 70p, how many boxes of each size did she buy?
- 3. Use Euclid's Algorithm to find all solutions to
 - i) $31x \equiv 4 \mod 41$,
 - ii) $97x \equiv 2 \mod 157$,
 - iii) $\bigstar 1679x \equiv 21 \mod 2323$,
 - iv) \bigstar 87 $x \equiv 57 \mod 105$.
 - v) \bigstar 31 $x \equiv 4 \mod 385$,
 - vi) $32x \equiv 47 \mod 385$,
 - vii) $47x \equiv 13 \mod 73$,
 - viii) $42x \equiv 90 \mod 156$.
- 4. i) Find the inverse of 5 modulo 43.
 - ii) Solve the following congruences
 - a) $5x \equiv 17 \mod 43$,
 - b) $25x \equiv 13 \mod 43$,
 - c) $26x \equiv 41 \mod 43$.

5. Solve the following systems of linear Diophantine equations.

i)

$$x \equiv 3 \mod 11,$$

$$x \equiv 4 \mod 13.$$
ii)

$$\bigstar 2x \equiv 1 \mod 7,$$

$$4x \equiv 6 \mod 11.$$
iii)

$$\bigstar x \equiv 432 \mod 527,$$

$$x \equiv 324 \mod 697.$$
iv)

$$31x \equiv 4 \mod 41,$$

$$47x \equiv 13 \mod 73.$$
v)

$$\bigstar x \equiv 1 \mod 4,$$

$$x \equiv 2 \mod 3,$$

$$x \equiv 3 \mod 7.$$
v)

$$5x \equiv 1 \mod 7,$$

$$9x \equiv 4 \mod 11,$$

$$11x \equiv 2 \mod 13.$$

- 6. a) By using the method of *successive squaring*, find the remainders of the following numbers on dividing by 41.
 - (i) 5^4 , (ii) 5^{16} , (iii) 5^{64} .
 - b) Use the answers to part (a) to find an $n \in \mathbb{N}$ such that $5^n \equiv 1 \mod 41$.
 - c) Use part (b) to solve $25x \equiv 7 \mod{41}$.
- 7. What are the remainders when 3^{40} and 40^{35} are divided by 11? Prove that $3^{40} + 40^{35}$ is divisible by 11.